
0018-9162/98/$10.00 © 1998 IEEE March 1998 43

The Emergence 
of Distributed 
Component Platforms

M
uch has changed in the world of compo-
nent software since we last surveyed
emerging standards three years ago.1 In
that time, several vendors and consortia
have independently developed standards

that define the basic mechanics for building and inter-
connecting software components. Sun’s JavaBeans has
emerged as the leading rival to Microsoft’s DCOM
(Distributed Component Object Model), supplanting
the OpenDoc standard from the now defunct Compo-
nent Integration Laboratories. Component software is
moving from its original focus on desktop-bound com-
pound documents to enterprise applications that include
distributed server components.

The backers of competing standards are racing to
capture market leadership by delivering the tangible
benefits of component standards via distributed com-
ponent platforms—integrated development and run-
time environments that isolate much of the conceptual
and technical complexity involved in building com-
ponent-based applications. With DCPs, businesses can
assign their few highly skilled programmers to com-
ponent construction and use less sophisticated devel-
opers to carry out the simpler assembly tasks. By
making component standards available to the broad-
est possible spectrum of developers, DCPs essentially
drive those standards to market.

In this article, we review the state of component soft-
ware as embodied in DCPs. The two DCP market lead-
ers are Microsoft’s DCOM (or ActiveX/DCOM) and
Sun’s JavaBeans. However, Internet and Object Man-
agement Group (OMG) component standards are
emerging that will likely impact both the content and
status of these two DCPs. We also discuss component
frameworks, which extend DCPs to provide more com-
plete application development solutions.

DCP CONCEPTS
Software components are reusable building blocks

for constructing software systems.2 Components
encapsulate semantically meaningful application or
technical services, such as rating insurance appli-
cants or authorizing client access to service
resources. Components differ from other types of
reusable software modules in that they can be mod-
ified at design time as binary executables; in con-
trast, libraries, subroutines, and so on must be
modified as source code. 

Component standards specify how to build and inter-
connect software components. They show how a com-
ponent must present itself to the outside world,
independent of its internal implementation. This single-
minded emphasis on external interfaces and interac-
tion protocols distinguishes component standards from
other communication conventions. Well-thought-out
component standards ensure that

• components with similar specifications are inter-
changeable and independently upgradable,

• developers can customize the appearance and
behavior of components along predetermined
dimensions, and

• components can be combined to form larger
grained components as well as complete applica-
tions.

Thus, component standards play a critical role in
ensuring that developers achieve the anticipated ben-
efits from reusable components—enhanced produc-
tivity, uniformity, ease of use, and faster time to
market.

Component interfaces
A component restricts access to its services and inter-

nal structures through one or more public interfaces.
As Figure 1 shows, an interface defines a set of prop-
erties, methods, and events through which external
entities can connect to, and communicate with, the
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component. Properties and methods typically repre-
sent a component’s callable API—the protocol used
by external entities to access a component’s services.
Properties expose a component’s public attribute data
via accessor operations; methods inaugurate a com-
ponent’s behavior. Events specify a component’s
response to external stimuli or internal conditions,
such as a property value changing. The component
interface specifies the signature of the event it will raise
when the condition occurs. It does not know or care
how that event is consumed or who the consumer is.
Consuming entities are responsible for registering
interest in the event and providing a handler for its
occurrence. This publish-and-subscribe model of inter-
action allows communication channels to be estab-
lished dynamically.

Containers
Components exist and operate within containers,

which provide a shared context for interaction with
other components. Containers also offer common
access to system-level services for a component’s

embedded components (such as process threads and
memory resources). Containers are typically imple-
mented as components, which can be nested in other
containers. An example is embedding widget field
arrays into panels within GUI windows. Event-based
protocols are commonly used to establish the rela-
tionship between a component and its container. 

Figure 2 illustrates dynamic event protocols for drag-
ging and dropping a component onto a container.
Upon initialization, the container registers its interest
in drag-and-drop events with a drop site. (Drop sites
are usually implemented as interfaces on the container
itself.) Later, when a drop event occurs, the drop site
notifies the container by calling the container’s previ-
ously registered event handler, passing a handle to the
dropped component. The event handler might change
the appearance of its container’s icon to, say, signal the
user that the drag-and-drop operation has successfully
completed. Typically, it will pass the dropped compo-
nent a handle to the container, which lets the compo-
nent access the container’s environmental services.

Pervasive metadata
Component standards specify the self-descriptive

information that a component must publish to flexibly
communicate with other components. This metadata
lets containers, scripts, development tools and other
components discover a component’s capabilities—either
statically at design time, or dynamically at runtime. 

Figure 3 illustrates the basic categories of metadata
used in DCPs. DCPs generally implement metadata as
a type of component whose interfaces are termed
introspection or reflection. The italicized terms corre-
spond to the categories in the figure. 

• Component info describes the component’s gen-
eral compile-time and runtime properties, includ-
ing where to find it and how to activate it (for
example, a path name and its process or its caller
process). 

• External references point to metadata that
describes other components. 

• Type descriptor and Type form the fundamental
metadata elements.
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Figure 1. How a com-
ponent Interface
works. An interface
defines a set of prop-
erties, methods, and
events through which
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connect to, and com-
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ponents. 

Component
Component

1. Register notify
(AddressOf DropEventHandler)

2. Drop event notification
(Component handle)

3. Provide EmbeddingContext
(Container handle)

Drop site

Component

DROP EVENT

Container
initialization

Drop event
handler

Figure 2. Event regis-
tration and notifica-
tion. A drag-and-drop
event is used to
dynamically relate a
newly embedded
component to its 
container.

.



• Interfaces describe public attributes, events, and
methods.

• Classes describe the implementation of one or
more interfaces. The metarelationships between
classes, types, and interfaces differ across DCPs.

• Attributes, methods, and events characterize the
classes and interfaces. All have associated metadata.

• Return types and parameters specify method
inputs and outputs. 

Recent advances in DCPs have been fueled primar-
ily by enriching component metadata and exploiting it
aggressively. For example, metadata drives component
composition and dynamic collaboration, enabling
components that discover and manipulate each other’s
interfaces at runtime. Similarly, tools that extend devel-
opment environments, such as object browsers, debug-
gers, and smart code editors rely on component
metadata to populate themselves. A DCP’s longevity
will depend strongly on the expressiveness and exten-
sibility of its metadata model. 

Integrated development environments
The notion of a component is inseparable from the

notion of a component development environment or
builder. The value of a DCP depends heavily on the
efficacy and usability of its integrated development
environment. IDEs are rapidly moving from text-based
programming toward the direct manipulation of visu-
ally rendered components. Commercial IDEs include

Microsoft’s Visual Studio, IBM’s VisualAge for Java,
and Symantec’s VisualCafe, supplemented with script-
ing languages such as VBScript and JavaScript.

IDEs typically include or are evolving to include

• one or more palettes for displaying available
components (rendered as icons);

• a “canvas” container onto which components
are placed and interconnected, typically through
drag-and-drop operations and pop-up menus;

• property and script editors that let users cus-
tomize components within their containers;

• editors, browsers, interpreters, compilers, and
source-level debuggers for developing new com-
ponents and testing and refining component
applications;

• a component repository and associated design-
time browser services to locate components by
matching user search criteria and using inspec-
tors to view component metadata; and

• configuration management tools that structure
and coordinate team-based development and
release processes—tools that are essential for
large software projects.

Figure 4 depicts a scenario in which a developer
uses an IDE to construct an application by composing
new components visually and scripting interactions
between existing and new components.

This scenario illustrates that an IDE not only must
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support the creation and composition of reusable
components, it must also act as a framework for seam-
lessly integrating new components into itself. The IDE
relies on the DCP’s component standard to ensure
agreement among the components, containers, and
IDE on the patterns for hierarchical composition and
metadata exchange.

Developers can also customize existing components
by setting property values and providing new handlers
for their events, as shown in Figure 5. Developers
modify components either explicitly, via IDE menus
and editors, or implicitly, as side effects of visual
manipulations such as dropping component icons
onto containers. Either way, the IDE must know how
to access a component’s metadata to display and pop-
ulate editors or handle drag-and-drop events.

Components that can be customized must know if
they are executing in a runtime or design-time con-
text. Components expose different interfaces and dis-
play different behaviors at these times. During design,
the component collaborates with the IDE through its
metadata to expose its property and event editors. At
runtime, however, the component manifests the
behaviors specified during design. For example, click-
ing on a button component during design generally
opens an event editor; at runtime, the same mouse
click signals the button’s window container to per-
form some action, such as closing itself. 

Distributed server components 
Enterprise computing relies on a robust set of ser-

vices for accessing and managing shared services,
information, and computing resources. To move
beyond the desktop, components require five distrib-
uted services: 

• Remote communication protocols, which enable
interactions at the application layer among com-
ponents distributed over a network. Protocols
can be synchronous (for example, remote proce-
dure calls) or asynchronous (for example, mes-

saging services that enable an efficient, non-
blocking store-and-forward model).

• Directory services, which provide a coherent
global scheme for naming, organizing, and
accessing shared services and resources.

• Security services, which protect shared resources
by ensuring that communicating parties are prop-
erly authenticated and have suitable authoriza-
tion, and that third parties have not intercepted
or tampered with their messages.

• Transaction services, which coordinate concur-
rent updates to enterprise-critical data, and
ensure that all updates leave data in correct and
consistent states.

• System management services, which provide a
unified set of facilities to monitor, manage, and
administer services and resources across the
enterprise.

A large installed base of mature products that sup-
port distributed-service APIs already exists. However,
because these product sets deliver overlapping services
through different APIs, it is difficult to select products
and integrate their services into applications. This
makes it much more challenging to design enterprise
server components that can effectively incorporate dis-
tributed services. 

In fact, many distributed facilities are not services in
the traditional client-server sense. Rather, they con-
stitute part of a component’s runtime environment.
For example, a server component may obtain trans-
actional persistence from its runtime context, rather
than implementing it directly. The relationship
between transaction context and server components is
roughly analogous to visual containment of desktop
components. 

DCP providers are attempting to generalize con-
tainment models to encompass the relationships
between server components and their runtime hosts;
like visual containers, transaction contexts provide
runtime access to basic life-support and custodial ser-
vices for their components. However, server compo-
nents generally provide concurrent services to many
users, whereas desktop components support single
users. Also, server components are often multi-
threaded, replicated, and pooled, to achieve scalabil-
ity and reliability. Consequently server components
can’t readily be organized into static containment hier-
archies. In short, the complexities of distributed com-
puting threaten the viability of container-based models
for designing and using server components.  

DCOM
Microsoft’s DCP is based on DCOM, which con-

sists of the Component Object Model (COM) binary
standard, augmented with a runtime infrastructure to
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Figure 5. Customizing components in the IDE.
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support component communication across distributed
address spaces.3-4 (Earlier COM-based incarnations
were named VBX and OCX, for VisualBasic and OLE
controls, respectively.) DCOM specifies the type and
the structure of the interfaces components must imple-
ment. All DCOM components must implement at
least one interface, IUnknown, which supports basic
mechanisms for casting interface references and ref-
erence counting.5-7

DCOM itself is a relatively simple component stan-
dard; its utility resides more in specialized interfaces,
such as compound documents, drag-and-drop, and
persistent streaming and storage. DCOM’s event noti-
fication mechanism is implemented through
IConnectionPoint and several related interfaces.

DCOM component interfaces are specified using
an Interface Definition Language (IDL) derived from
the Open Software Foundation (OSF). DCOM is inde-
pendent of language and implementation. Until
recently, DCOM was restricted primarily to the
Windows platform. Maturing ports to Unix and
MacOS are reducing DCOM’s platform dependency. 

Development environment
Microsoft’s Visual Basic 3.0 provided a rudimen-

tary but productive environment for assembling VBX
components, which have since been replaced with
components based on the DCOM standard. In addi-
tion, Microsoft has infused progressively more com-
ponent-oriented programming capabilities into its
IDEs. For example, VB 5.0 lets developers create new
components as well as use existing ones. In addition,
the VB IDE now creates much of the boilerplate code
components require at runtime. For example, it auto-
matically generates and registers component interfaces
and metadata.

The Microsoft IDE currently supports component
development in three languages—Visual Basic, Visual
C++, and J++ (Microsoft’s Java). The IDE is itself an
application built using the native DCOM model, mak-
ing it extensible and customizable through standard
DCOM mechanisms. It also provides mechanisms
(add-ins) that help developers customize it to, say,
have a different look and feel or enforce desired devel-
opment patterns. 

Metadata
The basic COM model supports a rudimentary form

of component self-description through IUnknown. In
addition, a set of metadata components, Type
Libraries, express in machine-readable form what IDL
expresses in human-readable form.

A Type Library collects metadata for its associated
component and provides ITypeLib and ITypeInfo
interfaces to access and navigate the metadata. A Type
Library contains five general kinds of information:

• CoClass is a metadescriptor for a COM
object, describing all incoming and outgo-
ing interfaces for that COM class, includ-
ing public properties and methods.

• Interface provides memory layout and de-
scriptive information for public operations
such as names, return-type, and optional
dispatch identifier.

• Module describes the dynamic linking
library (DLL) module, including path name
global variables and exported functions.

• Typedef is the metadescriptor for user-
defined data structures.

• Importlib provides a way to get the
metadescriptor for a referenced Type Library. 

Each metadescriptor specifies a common set of
properties, including a human-readable name,
machine-readable globally unique identifier (GUID),
version, documentation string, help file name, and
flags (for example, hidden or restricted). 

Given a class identifier (CLSID), a client can get a
handle to a component’s Type Library and query its
metadata without an instance of the component.
Alternatively, if a running component instance is avail-
able, a client can obtain the Type Library through the
instance’s IProvideClassInfo interface. The first
mode typifies a design scenario. The second mode aids
in dynamically discovering interfaces and in compo-
nent collaboration at runtime.

Server platform
Microsoft is strongly committed to delivering a

credible server component platform by successively
enhancing the NT operating system. NT’s current and
beta-level distributed enterprise services include

• Remote communication protocol. DCOM uses
remote procedure calls to communicate across
the network. Microsoft’s RPC, derived from the
OSF DCE RPC, allows communication among
distributed components through a standard
proxy/stub mechanism. Microsoft also plans to
support an asynchronous protocol directly in
DCOM, most likely through tighter integration
of their messaging product, MS Message Queue. 

• Directory services. Microsoft Active Directory
combines Domain Naming System, the dominant
Internet name resolution scheme, with the
Lightweight Directory Access Protocol (LDAP),
which is ISO X.500 compliant. Microsoft plans
to integrate these services into the next release of
Windows NT.

• Security services. Microsoft NT provides Secure
Sockets Layer public-key-based security and a
proprietary security protocol that is based on NT
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LAN Manager (NTLM). However, the next
release of NT will include a security service
compliant with Kerberos 5.0 and tightly inte-
grated with Microsoft’s Active Directory.

• System management services. NT 4.0 includes
a Management Console (MMC) that com-
prises a UI container for third-party systems
management components. NT 5.0 is slated to
provide a true management information bus
that will support mechanisms to monitor and
manage the resources and services on a dis-
tributed NT installation. The bus will also pub-
lish a set of APIs for integrating existing system
management products. 

• Transaction services. The Microsoft Trans-
action Server integrates transaction services
into the component development model and
provides a transactional runtime environ-
ment for server components. MTS defines
ObjectContext, an analog to containers
for server components. Server components
access their operational context through this
component’s IObjectContext interface.
Components created within, or added to, an
ObjectContext participate transparently
in that context’s transactions and share that
context’s associated security.

JAVABEANS
JavaBeans has quickly gained market attention,

emerging as the dominant competitor to DCOM.
Whereas DCOM is language-neutral but platform-
dependent, JavaBeans is platform-neutral but lan-
guage-dependent. DCOM capabilities are built up by
composing more elementary binary components. For
example, the IPersist interface is composed from
IStorage and IStream. In contrast, JavaBeans
component capabilities are implemented as a set of
language extensions to the standard Java class library.
Thus, JavaBeans is a set of specialized Java program-
ming language interfaces. It achieves platform porta-
bility through the Java Virtual Machine. 

Like DCOM, JavaBeans interfaces expose proper-
ties, methods, and events. The JavaBeans property
model is richer than DCOM’s: In addition to single-
and multivalue properties, JavaBeans defines bound
and constrained property types. Bound properties use
Java events to notify other components of a property
value change; constrained properties let those com-
ponents veto a change. Constrained properties pro-
vide a uniform language-based approach to basic
validation business rules. Both bound and constrained
properties are missing from most object-based sys-
tems. They let developers factor application logic in a
modular and maintainable way that makes it easy to
preserve the consistency of business data.

JavaBeans’ event notification mechanism involves
three related Java-level class interfaces—Event,
EventSource, and EventListener. Event-
Source notifies all registered EventListeners,
passing each an Event object when the event of inter-
est occurs. The event model supports two other fea-
tures that enhance ease of use. EventSourcesdefault
to multicast but can be set to unicast—allowing at most
one EventListener. EventAdapters can be
added to relieve developers from having to write han-
dlers for all the events defined in a listener’s interface.

In addition to component interface constructs,
JavaBeans incorporates mechanisms for component
containment and pervasive metadata analogous to
DCOM. However, DCOM components implement
persistent identity through GUIDs. JavaBeans use
string names, which may not be globally unique.

Development environment
The JavaBeans API explicitly supports visual devel-

opment of Bean components using property sheets—
built-in property editors and editor aggregations. This
IDE or application builder support is analogous to
DCOM’s IPropertyPage interface.

A growing number of IDEs (including Symantec’s
VisualCafe, IBM’s Visual Age for Java, Borland’s
JBuilder, and Sun’s Java Workshop) support visual
development with property sheets, palettes, and
design-time drag-and-drop behaviors. These tools
offer productivity features comparable to the
Microsoft IDE. In addition, their visual model for
interconnecting components is significantly more
expressive and intuitive than the current versions of
the Microsoft IDE.

Metadata 
JavaBeans inherits Java’s Core Reflection API, which

provides a specialized set of classes for metadata. Each
of Java’s methods, fields, constructors, interfaces, and
classes has a corresponding metadata class that sup-
ports dynamic interrogation, instantiation, and invo-
cation. Unlike the Java language, ANSI C++ and Visual
Basic don’t have built-in reflection support. Con-
sequently all metadata on DCOM (except for J++) is
in the component model, not the language.

In addition to Java’s Core Reflection API, JavaBeans
provides an Introspection interface that returns a
different set of metadata classes tailored to support
component-based development. For example, the
visual icon that a Bean displays on an IDE’s palette is
specified by the BeanInfometadata class. The other
JavaBeans metadata classes are derived from a com-
mon base class, FeatureDescriptor, and roughly
correspond to DCOM metadata,8 as summarized in
Table 1. To foster the systematic use of JavaBeans
metadata, the DCP provides a utility class,
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Inspector, which navigates the Introspection and
Core Reflection APIs.

Despite their many useful features, the JavaBeans
metadata facilities rely heavily on error-prone nam-
ing conventions called design patterns. For example,
the accessor and mutator methods for a property X
must be named GetX and SetX in order for the
Introspection interfaces to work properly.
EventListeners and BeanInfo names are simi-
larly constrained by string-oriented templates. 

Distributed server components
Sun has recently released a preliminary specifica-

tion for Enterprise JavaBeans (EJB). The goal is to
provide the same kind of scalable, enterprise-capable
server environment for JavaBeans that Microsoft is
delivering and hardening for Windows NT servers.9

The standard explicitly specifies that all Enterprise
JavaBeans will run inside a container that isolates the
JavaBean from the server execution environment. The
container automatically allocates process threads to
the component and manages concurrency, security,
persistence, and transactional activities on behalf of
the component. EJB’s server environment includes

• Remote communication protocol. JavaBeans has
full access to Java’s native remote method invo-
cation (RMI), which runs directly on top of
TCP/IP. However, enabling RMI for a class
requires making explicit changes to an existing
Java class. Also, instances of remote classes can-
not be passed by value.

• Directory services. Sun has released a beta ver-
sion of the Java Naming & Directory Interface
(JNDI), which provides an implementation-
independent API that allows applications writ-
ten in Java to leverage existing directory services
such as LDAP and Domain Name System. EJB

containers must be locatable through the JNDI. 
• Security services. EJB can use all security services

specified by the standard java.security
package. This includes public- and private-key
authentication, encryption, digital key manage-
ment, and access control lists.

• Systems management services. At the time of this
writing, Sun has not met its scheduled public
released date of fourth quarter 1997 for the 1.0
specification for its Java Management API
(JMAPI). However, available documentation
indicates that JMAPI will specify a comprehen-
sive set of monitoring, management, and admin-
istrative services, including a UI style guide for
an administrator’s console (http://java.sun.com/
products/JavaManagement/document.html). 

• Transaction services. The EJB specifies a flat
transaction model based on the OMG’s Object
Transaction Service, explicitly discouraging use
of the existing Java Transaction Service (JTS)
API. Instead it delegates transaction management
to the Bean’s container.

JavaBeans components can be packaged for embed-
ding in containers that support Microsoft’s DCOM
component model, including Visual Basic, Internet
Explorer, Office, and Lotus Notes. This form of inter-
operability is driven by a communication bridge. The
core technology behind the bridge is a packaging util-
ity that generates an OLE Type Library and Win32
registry information for selected JavaBeans. The
resulting data lets DCOM containers properly ana-
lyze, present, and manipulate Beans (for example,
catching Bean events, invoking Bean service methods,
and creating property sheets to customize Beans). 

DISTRIBUTED COMPONENTS ON THE WEB
The Internet and private intranets are increasingly
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Table 1. Comparison of DCOM and JavaBeans metadata. 

Generic metadata DCOM Java Core Reflection JavaBean, BeanInfo
Class CoClass, ITypeInfo Class BeanDescriptor.GetBeanClass
Type TypeDef Class
To Get from running object AnObject.IprovideClassInfo() anObject.GetClass()
To dynamically instantiate a class ITypeInfo.CreateInstance() aClass.newInstance()
To get reflected member GetFuncDesc(),GetTypeAttr(), GetClasses(),GetFields(), GetEventDescriptors,
information GetVarDesc(),GetNames().... getMethods(), GetMethodDescriptors, 

getConstructor() GetPropertyDescriptors
To navigate up ITypeInfo.GetContainingTypeLib() GetDeclaringClass()
To dynamically invoke a method Invoke() Invoke()
ComponentInfo ITypeLib.GetLibAttr() BeanDescriptor, BeanInfo

ITypeInfo,GetDLLEntry()
External References ImportLib Package import conventions
Standard metadata conventions Element Attributes FeatureDescriptor

.
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perceived as critical to enterprise computing
architectures. Unfortunately, attempts to use the
Web as a platform for distributing component
applications have been impeded by the limited
expressiveness of the HTML document standard. 

As a short-term response, the World Wide
Web Consortium (W3C) has incorporated an
<object> tag into HTML 4.0. W3C is also
sponsoring more broadly based architectural
solutions. These emerging standards could
potentially lead to a convergence between com-
ponent and Web document architectures. 

Extensible Markup Language, or XML
(http://www.w3.org/TR/REC-html40/), is a
metamodel for structured document exchange
based on the Standard General Markup

Language (SGML, an ISO standard). HTML restricts
Web documents to a predefined set of tags for speci-
fying content and format. In contrast, XML supports
the definition of customized markup languages. For
example, XML tags could be defined for classifying
component applets according to company- or industry-
specific classifications. 

The Resource Description Framework, or RDF
(http://www.w3.org/TR/WD-rdf-syntax) is a meta-
model, to be expressed using XML, for capturing
metadata about Web resources. Such metadata could
be used by search engines, automated agents, and
other Web client and server applications for compo-
nent searching, rating, access control, licensing, and
management.

The Document Object Model, or DOM
(http://www.w3.org/TR/WD-DOM), specifies automa-
tion interfaces through which scripts or applications
can access and manipulate Web documents. Given suit-
able XML tags, DOM would allow Web documents
to be manipulated as components or containers. 

These W3C specifications represent a coordinated
attempt to define object semantics for lightweight net-
works of distributed documents. They appear to
accommodate component-level semantics as well.
W3C efforts align with DCPs in assuming that per-
vasive metadata enables semantically rich interoper-
ability, whether between components or Web
documents. 

OMG COMPONENT STANDARDS
The Object Management Group has played a lead-

ing role in establishing open system specifications for
distributed object computing.10 Until recently, OMG
focused on object-level standards. Responding to ease-
of-use concerns from members aligned with the
JavaBeans standard, the OMG issued a request for
proposal for component-level specifications last year
(http://www.omg.org). The RFP identified four core
categories of requirements for standards:

• a component model that defines a component
type system; interfaces for exposing and manag-
ing properties; mechanisms for raising and han-
dling events; life cycle structure; and serialization;

• a component description facility that consists of
a reflective information model supported by
existing or new CORBA-related repositories;

• a programming model that maps component
descriptions to languages that support CORBA
IDL mappings, and that lets components be passed
as value parameters in CORBA requests; and

• a mapping to the JavaBeans component model
that supports both design and runtime interop-
erability needs, including component inspection
and the automated generation of software to inte-
grate CORBA components into Java-based tools. 

The OMG has several other RFPs in process for stan-
dards relating to the component model category. One
RFP addresses the problems of composing objects using
multiple IDL interfaces (for disjoint services) and of
resolving conflicts among multiple interfaces on a given
object. A second RFP solicits proposals for interfaces
to pass CORBA objects by value parameters in CORBA
object operations. Currently, CORBA supports the
passing of object parameters only by reference, which
impedes the port of RMI from a Java-based protocol to
IIOP. A third RFP focuses on scripting languages to sup-
port automation for CORBA components. 

OMG generates specifications rather than software
products or DCPs. Some DCPs, such as JavaBeans,
are virtually certain to comply with these standards,
while others such as DCOM (ActiveX) probably will
not. However, the OMG developed dedicated specifi-
cations to ensure interoperability of CORBA and
COM objects to reflect Microsoft’s dominance of
desktop computing. Similar market pressures will
likely lead to analogous OMG specifications for the
interoperability of DCOM and CORBA components.

COMPONENT FRAMEWORKS
DCPs do not of themselves guarantee complete and

satisfactory software applications. They help users
construct, reuse, and connect components, but they
supply no guidance for application-level semantics or
structure—how to design and arrange specific com-
ponents to solve specific business problems. They also
don’t guarantee robust, scalable, and agile systems—
areas that continue to require considerable engineer-
ing experience and discipline.

Component frameworks are an increasingly popu-
lar strategy for augmenting DCPs to fill these gaps. A
component framework is a concrete implementation
of one or more design patterns tailored to a particular
business or technical domain, such as help desks, health
care, or user interface construction.11 A design pattern

W3C efforts align
with DCPs in 

assuming that 
pervasive metadata

enables
semantically rich
interoperability,
whether between

components or Web
documents.

.



expresses an abstract solution to a recurring design
problem, as a set of components and component inter-
actions.12 Examples include the Smalltalk Model-View
Controller and market auction patterns, which help
synchronize graphic displays and allocate scarce
resources, respectively. A framework methodology
guides application developers in determining exactly
what to build and how to build it using that framework.

Computer Sciences Corp.’s Lynx framework illus-
trates how a component framework can extend a DCP
into a complete development solution. Lynx provides
a prebuilt application skeleton of component templates
tied together by collaborative patterns. Developers
extend the templates with business-specific compo-
nents to construct custom applications such as insur-
ance underwriting, toll collection, process control for
plastics manufacture, and customer service.

As do all component frameworks, Lynx defines and
factors functionality into components and patterns on
the basis of specific technical and business design

goals. CSC’s focus is on large-scale, mission-critical
business systems, so Lynx’s overarching goal is to sup-
port high-volume, online transaction-processing appli-
cations. Typical Lynx applications support thousands
of users, performing 20 to 30 complex business work
units per second with subsecond response times. (We
use “business work unit” instead of “transaction” to
avoid confusion with TPC database transaction met-
rics. Business work units span multiple tiers, and may
encompass a few or dozens of TPC transactions,
depending on the application.) Lynx aims to balance
performance and scalability against secondary goals
of developer productivity and application agility; Lynx
lets developers adjust this mix systematically by cus-
tomizing or extending framework components and
patterns to reflect application-specific trade-offs.

As Figure 6 shows, Lynx is actually a framework of
frameworks, which collaborate to achieve a set of
goals. Lynx attacks its performance goal by mini-
mizing the number of process boundary traversals
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Figure 6. The Lynx framework extends directly out of the DCP substrate. Lynx’s prefabricated components are organized into layers that expose a
succession of technical and business services. Each layer is segmented into functionally specialized frameworks. At the lowest layer, Lynx simply
packaged technical service APIs to achieve high performance and scalability. Each higher layer infuses a more specialized business perspective
that hides the complexities of the lower layers. All layers conform to the DCP’s uniform programming model. 
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required to complete business work units: The
transaction and message-routing frameworks
collaborate to package an entire work unit into
a single message. Lynx addresses scalability by
minimizing the scope and duration of locks
against shared services. For example, the mes-
saging framework uses remote service proxies
with connectionless service references rather
than RPC-style proxy stubs; overall concur-
rency is maximized by preventing any one
client from monopolizing access to shared mid-

dle-tier services. Message routing and system moni-
toring also cooperate for scalability, which allows
dynamic replication and distributed load balancing
of middle- and back-end services to accommodate
increased demand.

Inappropriate coupling between components makes
applications less flexible. Lynx minimizes design-time
dependencies between components that capture the
core business model and those that support presenta-
tion, workflow, and database persistence. Isolating
components by functional roles means that part of an
application can change with little or no effect on the
other parts, promoting agility. For example, persis-
tence implementations can be tuned or switched with-
out affecting business or presentation components.
Isolation also fosters productivity because developers
can train quickly and specialize on manageable pieces
of the framework. 

Lynx’s layering scheme isolates application-level
development from the complexities of the technical
infrastructure, which also contributes to agility. To
date, we have implemented Lynx on two distinct plat-
forms with minimal architectural and design changes:
Forte Software’s distributed object development envi-
ronment and Microsoft’s DCOM. Lynx’s higher lay-
ers preserve and expose both patterns and metadata
from lower layers, allowing selective adaptation and
tuning. Finally, layering promotes extensibility, both
vertically and horizontally. For example, we are incor-
porating frameworks for finance, process control,
legacy integration, business rules, and electronic com-
merce. In contrast to JavaBeans’ constrained proper-
ties, the rules framework supports rules that connect
multiple attributes across business entities (for exam-
ple, to constrain the salaries of managers and their
employees).

Tightly coupled to the Lynx framework is a method-
ology that defines the processes, techniques, work
products, and management model for using Lynx pro-
ductively. The methodology adapts and unifies a set
of standard analysis methods for static and dynamic
object modeling. These methods are synthesized with
techniques for modeling and reengineering business
processes. The methodology then specifies how to map
the resulting business object and process models onto

the Lynx framework in terms of components, busi-
ness services, application tasks, and GUI storyboard
layouts. For example, business entities, such as
Policy or Claim are translated into sets of collab-
orating display, business, and persistence components.
Because the default components and collaboration
patterns are uniform across business components,
Lynx can exploit automated code-generation tech-
niques at the framework level to maximize produc-
tivity. Project management processes are driven by a
road map that defines development activities, their
iteration and sequencing, dataflows, work roles, and
team structures. 

Frameworks such as Lynx embody architectural
blueprints for building component-based applications.
Frameworks and their supporting methodologies aug-
ment DCPs to minimize risk and help ensure design
uniformity and semantic interoperability across appli-
cations.

C omponent software standards continue to
evolve, along a fault line formed by rival tech-
nology sets from Microsoft and Sun. The dis-

tributed component platforms that extend and
package these standards are maturing rapidly into
commercial products accessible to a broad spectrum
of developers. 

Interest in component software has grown and
intensified in recent years. Business interest has been
driven by competitive pressures to deliver agile appli-
cations more rapidly and economically. Developer
interest derives from the ease of use of the latest IDEs,
which approaches the satisfying tactile experience
obtained from assembling physical parts. Finally, tech-
nical interest has been driven by three converging
trends for reuse. The patterns movement fosters reuse
at the level of software designs. Component frame-
works promote reuse of design patterns and code.
Component IDEs enable the construction and deploy-
ment of new frameworks, driving reuse of entire appli-
cation skeletons. 

Important challenges remain for component soft-
ware in enterprise settings. DCPs continue to expose
technical complexity to users: Server components and
supporting IDE extensions for developing, using, and
managing them are in their infancy. Standards for
deploying components across intranets to Web clients
are similarly immature. In addition, current DCPs sup-
port only basic one-to-one interactions between
remote components. Such substrates provide meager
support for developing the complex coordination pat-
terns required for collaborative workgroup applica-
tions, such as voting, negotiation, or sharing. 

The use of DCPs for large projects will hinge on the
availability of robust component-oriented method-
ologies. 

The use of DCPs for
large projects will
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availability of robust
component-oriented

methodologies. 
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The value of DCPs to end users depends directly on
a critical mass of ready-to-use components. This pre-
supposes a healthy market for third-party compo-
nents, complete with distribution channels, sustain-
able pricing models, and standards for packaging and
certification. Market growth also depends on some
form of stabilization or resolution to the conflict
between competing DCPs, most probably through
utilities such as the JavaBeans/DCOM bridge. Absent
interoperability solutions and standards equilibrium,
it will be difficult for component markets to expand.

To date, the majority of off-the-shelf components
consist of business-neutral GUI controls, such as
spreadsheets and graph or report generators.
Components are needed that represent business-level
entities and processes. Software vendors and industry
consortia such as IBM, Microsoft, and the OMG are
actively pursuing generic business components tar-
geted for various vertical markets. Prompt conver-
gence on standards is critical to preventing the
proliferation of custom components with incompati-
ble business semantics. Such a trend would obstruct
interoperability, reusability, and the growth of com-
ponent markets. 

We believe the ultimate value of software compo-
nents lies in frameworks that infuse progressively
more targeted business-level perspectives into DCPs.
The goal is to replace IDE palettes of text fields, data
grids, push-buttons, and similar GUI controls with
palettes that contain business objects, services, and
functional views. Developers would then select, cus-
tomize, and assemble these items into specialized com-
ponents such as insurance coverage, and script
complex business processes such as order fulfillment.
Thus, the real challenge of component software is to
let developers build business systems on business com-
ponent platforms, rather than software systems on
software component platforms. ❖
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